铸件抛光是铸件后处理的主要手段;但是,在此过程中产生的粉尘无法控制,大量的铬粉和镍颗粒会对环境造成危害.由于吸入粉尘,手工打磨会导致呼吸道和肺部疾病,甚至尘。而且人工抛光效率低,工件产品一致性差,报废率高。在机械打磨过程中,高密度灰尘会影响夹紧操作中使用的设备。高密度灰尘附着在设备上,灰尘会降低夹紧设备的精度和稳定性。当采用智能打磨方案时,密封机器人和传感设备,从而防止灰尘进入是一个挑战。此外,高密度的灰尘会阻挡传感设备的表面,这意味着它们无法准确地做出判断。同时,大的振动会对现场操作产生严重影响。
在石器时代,石磨主要用来制作各种刀、石斧和其他工具。在青铜时代,中国作为早采用铜冶炼的国家,掌握了先进的铸造后处理技术。锉刀用于弥补铸造缺陷,使铸件表面光滑,并使和工具更加锋利和抛光.进入铁器时代后,出现了旋转式磨具,为后续的机械打磨提供了参考。随着铁器和旋转工具的出现,以及蒸汽机出现后次工业革命的到来,制造材料主要是铸铁。虽然铸造产品发生了变化,但打磨方法仍然采用手工打磨。西门子在1866年开发了发电机,为机械打磨提供了技术支持。1914年,美国3M公司开发的砂纸产生了一种用于铸件后处理的新打磨工具。发展随后进入铸件后处理中人工与机械打磨相结合的时期,一直延续至今。
Kuka Titan系列机器人,该机器人带有一个40马力的主轴电机作为末端执行器。这个令人生畏的组合创造了一个巨大的机器人打磨工具。该机器人有6个运动轴,延伸距离近12英尺,能够以惊人的灵活性完成大范围的工作。除了机器人的尺寸之外,它还具有1650磅的有效载荷能力,使其能够携带巨大的40马力主轴电机进行打磨,并能够在主轴末端产生足够的力来进行一些严重的材料去除。
任何打磨环境的主要限制之一是材料的去除速度。这是材料硬度和横截面的函数,或者是被去除材料的体积。高速主轴电机用于通过简单地加速来改善材料去除,通常速度为10,000至40,000 rpm。然而,在打磨过程中,去除的材料量会出现不必要的变化。